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Of the many complex processes of granular materials, vibrational settling and compaction are common
phenomena that have attracted much attention. In this work, we investigate vibrational, or tapping, compaction,
and propose that the underlying kinetics involves clusters fragmenting and aggregating, and individual grains
attaching and dissociating at cluster surfaces. The periodic vibrations cause cluster breakage and interchange
between individual free grains and the clusters. The population balance equations for the concurrent kinetics
are solved by a moment method, yielding easily solved differential equations. The compaction ratio defined in
terms of the mass moments agrees well with experimental data[Knight et al., Phys. Rev. E.51, 3957(1995);
Nowaket al., ibid. 57, 1972(1998)] and other models. A change in tapping acceleration can produce reversible
or irreversible transitions between densities, depending on the number of clusters that have evolved.
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INTRODUCTION

Settling and compaction of powders and grains occur in a
myriad of natural and industrial processes. When lightly
packed granular materials are tapped, vibrated, or shaken in a
gravity field, the packing density can increase by relaxation
mechanisms that are not well understood. In a seminal study,
Knight et al. [1] reported that monodisperse spherical glass
particles shaken in a vertical cylindrical tube evolved from a
low initial density to a final density that depended on the
tapping intensity. As proposed earlier by Barker and Mehta
[3], the complex time dependence of the density relaxation
required two time constants, suggesting that two types of
packing are involved. The slow(logarithmic) transition be-
tween packing states was explained by individual particle
movements similar to automobile parking[4]. We hypoth-
esize that two types of packing are involved: free grains
amorphously packed at low density and coherent clusters of
larger density. The transition between them can be explained
by individual grains attaching and detaching from the
densely packed clusters. The experiments of Nowaket al. [2]
showed that reversible or irreversible changes between den-
sity states occurred for different changes in tapping intensity.
This dependence on the process history is an additional in-
triguing and challenging issue that, according to our pro-
posal, is related to the cluster evolution. A realistic theory of
granular compaction should describe both kinds of experi-
mental observations.

We explore the possibility that cluster kinetics based on
population balance(distribution kinetics) modeling can de-
scribe the observations. Goldhirsch and Zanetti[5] and Jae-
geret al. [4], through two-dimensional simulations, reported

the tendency for free grains to aggregate into clusters, which
are sometimes chainlike. Since interactions among particles
in a granular medium are inherently inelastic, energy is lost
in each collision, allowing particles to aggregate. When the
grains are in a gravitational field, they will tend to fall into
aggregates or ordered domains. The process is similar to a
liquid-solid phase transition with free grains analogous to a
liquid phase and clusters to the crystalline phase. The pro-
posed distribution kinetics method has been used to describe
a range of crystallization processes, including crystal growth
[6(a)], coupled with nucleation[6(b)] and Ostwald ripening
[6(c)]. The dynamics of polymorphic crystalline forms has
also yielded to this approach[6(d)]. The clusters considered
here are close-packed crystalline forms that perhaps grow
near the container walls[2]. Free single grains are those not
associated with a cluster during the vibrational agitation of
the granular medium. When the tapping vibrations in the
experiments cause more consolidation, the number of free
grains decreases as the compact clusters grow. The amount
of compaction will depend on the strength of the agitation
process; stronger accelerations typically allow more grains to
seek the closer-packed configuration. Extremely vigorous
and continuous vibration, however, would cause greater clus-
ter breakup and detachment of free grains, a process similar
to soil liquefaction during earthquakes. One might anticipate,
therefore, that compaction versus tapping intensity will show
a maximum[2].

Vibrational compaction is one of many processes impor-
tant to handling particulate solids[7]; flow, mixing, arching,
compression compaction, shearing, and fluidization are other
processes that may be influenced by cluster kinetics. Our
approach to the kinetics and dynamics of clusters is similar
in philosophy to chemical kinetics. There, rate coefficients
enter the models via constitutive relations, just as rate coef-
ficients proposed for Eqs.(1) and(2) below appear in the rate
equations. Such parameters obviously depend on underlying
molecular or microscopic processes, but much can be learned
by considering how they vary with experimental conditions.
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For example, our approach has been applied to granular mix-
ing by tumbling operations[6(e)], whereby loose particles
slide down the inclined surface and/or particle clusters frag-
ment and fall down the incline. The method allowed straight-
forward derivation of experimentally observed asymptotic
power law or exponential behavior of segregation metrics for
various rate coefficient expressions. In another instance, ap-
plication of cluster kinetics to phase transition dynamics cor-
rectly predicted the asymptotic scaled coarsening of the clus-
ter size distribution[6(f)].

The initial condition for density relaxation experiments
[1] was prepared by blowing dry nitrogen gas up through the
granular medium. Before the vibration began, the packing
fraction was 0.58[1] or 0.59[2]. An experiment consisted of
well-separated accelerations, or taps, of the vertical cylindri-
cal tube holding the granular material. Given that the system
relaxes following each tap, grain transfer to or from clusters
occurs only during the acceleration. The tapping intensity
was measured by the ratio of the peak acceleration of a tap to
the gravitational accelerationG=a/g. According to the
present model, the initial condition for computations is the
state of the granular medium caused by the tapping, i.e.,
during the agitated state. Thus, in the initial low-density con-
dition, many grains are detached and free to aggregate in
different clusters.

Starting at an initial packing fractionrst=0d=0.59,
Nowaket al. [2] investigated the reversibility of the granular
compaction process by observing steady state values of den-
sity after 10 000 taps when the tapping intensityG was in-
creased in steps of approximately 0.5 between steady states.
As a result the packing fractionr increasedirreversibly to
0.635 at the critical valueG* <3.3. A further increase ofG
led to slightly reduced densitysr<0.63d, whereas decreas-
ing G causedr to asymptotically approach 0.658 asG neared
zero. These transitions werereversible, in contrast to the ini-
tial transition from smallG up to G*. In terms of the cluster
hypothesis, this history effect, manifested as reversible/
irreversible behavior, suggests that clusters grown irrevers-
ibly to a critical size can then be reversibly grown or re-
duced.

Several theoretical and phenomenological models have
been advanced to interpret the granular relaxation experi-
ments[1], but there has been less comment on the reversibil-
ity results [2]. Hong et al. [8] considered relaxation under
tapping a problem of diffusing voids. They numerically
solved a one-dimensional diffusion equation for voids mov-
ing upward through the granular medium. When the void
diffusion was related to the traffic problem, it was found that
voids arrived periodically at the top of the packed bed.
Barker and Mehta[3] suggested that independent particles
and clusters interact through diffusion in vibrated powders.
Applying Monte Carlo computations to a collection of fric-
tionless hard spheres, they found final packing fractions de-
pended on the intensity of vibration. While a one-exponential
fit was fair, the results were better represented by a two-
exponential fit. An empirical equation with two parameters
was used by Knightet al. [1] to fit their experimental data.
Linz [9] showed how a phenomenological approach to de-
scribe the sequential taps provided a difference equation
whose approximate solution with two fitting parameters de-

scribed the experimental data accurately. Saluenaet al. [10]
interpreted the experimental data with a hydrodynamical de-
scription based on an assumed glasslike viscosity relation.
Gavrilov’s [11] recent paper, based on a one-dimensional
cluster model, has similarities with the current work. Follow-
ing cluster fragmentation concepts applied to traffic flow,
Gavrilov used a Monte Carlo approach to compute how in-
dividual grains dissociated from and reassociated with clus-
ters evolving to hexagonally packed clusters. However, clus-
ter fragmentation(breakage) and aggregation, described by
Eq. (2) below, were not considered. Recent work seems gen-
erally to agree on the tendency for grains to organize into
clusters or ordered domains[12–17].

The present objective is to explore a different approach to
density relaxation in granular media. The approach is based
on evidence for clustering among grains and recognition that
such clusters are distributed in size. We hypothesize that dur-
ing the relaxation, beginning with a loosely packed medium,
the discrete taps cause individual grains to dissociate from or
attach to the surfaces of clusters. The clusters may also frag-
ment and aggregate, exposing new surfaces for loosening
single grains. The end state of an acceleration period(or tap)
is the initial state at the beginning of the next tap. Disregard-
ing the time when the system is quiescent between taps en-
ables one to consider time a continuous variable. Quantifying
the evolution of the cluster distributions, both reversible and
irreversible time dependence, is a central goal. The kinetics
of the cluster processes are represented by population bal-
ance equations that explicitly govern the cluster size distri-
bution. Moment methods facilitate the derivation of simple
differential equations for the statistical properties of the clus-
ter size distribution.

An advantage of the distribution kinetics(rate) approach
reported here is that the moment properties of the size dis-
tribution can be evaluated efficiently by solution of differen-
tial equations. Averaged particle interactions are represented
by rate coefficients, much like intermolecular interactions are
averaged to represent crystal growth or chemical reaction
rates. This approach is commonly applied in polymerization
kinetics to obtain molecular weight distributions and their
moments, thus quantitatively describing the significant fea-
tures of polymer reaction dynamics[6(g)]. Computations and
the assumptions upon which they are based are relatively
straightforward. This approach is a systematic and versatile
method for investigating kinetics and dynamics of systems
distributed in size, such as evolving clusters[6]. For an ini-
tial condition with a small mass of clusters, a given accelera-
tion G will cause irreversible transition to a final steady state.
We attribute this irreversibility to the growth of clusters,
which, when formed, allow reversible changes for packing
densityr whenG is either increased or decreased. The pro-
cess is analogous to a phase transition withSplaying the role
of supersaturation andG representing energy input.

The paper is organized as follows. Beginning with a pre-
sentation of the appropriate cluster distribution kinetics, we
represent the governing population balance equations for the
cluster size distribution and monomer(grain) numbers. A
transformation to scaled dimensionless variables provides a
minimal set of parameters to determine. The scaled moment
equations for number of free grains and clusters and for clus-
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ter mass are solved exactly. The solutions are examined for
their dependence on fragmentation parameters and on initial
conditions. Finally, the results for packing fraction are com-
pared with experimental data for both reversible and irrevers-
ible observations.

CLUSTER KINETICS

If Csxd represents a cluster of massx and M sxmd is a
particle (monomer) of mass xm, we have for concurrent
monomer dissociation and attachment

Csxd�
kg

kd

Csx − xmd + M sxmd s1d

with rate coefficientskg and kd for cluster growth(attach-
ment) and dissociation(detachment), respectively. The clus-
ters may also fragment with breakage rate coefficientkb and
aggregate with rate coefficientka,

Csxd�
ka

kb

Csx8d + Csx − x8d. s2d

Here we consider that the rate coefficients may depend on
the strength of the acceleration, but we ignore any depen-
dence on packed bed depth or cluster size. Although it is
obvious how to extend the types of clusters beyond simple
forms considered here, we will show that the model of Eqs.
(1) and (2) is adequate to explain the observations.

The cluster size distributions are defined so thatcsx,tddx
is the number of clusters having mass in the intervalsx,x
+dxd. Population balances lend themselves to calculations by
moments, defined as integrals over cluster massx,

csndstd =E
0

`

csx,tdxndx. s3d

The zeroth momentcs0dstd is the time-dependent number
of clusters, and the first momentcs1dstd is the mass of clus-
ters. The average cluster mass is the ratiocs1dstd /cs0dstd
=cavgstd. Although we use only these lower moments for the
present treatment of granular materials, measures of cluster
polydispersity, such as variance, based on the second mo-
ment can also be defined[6(a),6(b)]. The size distribution of
the monodispersed grains ismsx,td=ms0dstddsx−xmd, in terms
of the number of grainsms0d.

If the volume per mass of the clusters isvA, the volume of
clusters isvAcs1d. Likewise, the vessel volume occupied by
free particles isvoxmms0d, wherevo is the volume per mass of
the loosely packed particles. The total volume displaced by
free particles and particles in clusters is the total mass of
particles,xmms0d+cs1d, divided by the particle mass density
dm. The experiment measures the packing(volume) fraction
defined as the ratio of the displaced volume to the total oc-
cupied volume,

rstd = fxmms0d + cs1dg/dmfvoxmms0d + vAcs1dg. s4d

It follows that the void fraction among the particles is 1
−rstd, which decreases as the granular material is com-
pacted.

Consider identical grains of massxm that can be either
free or aggregated into clusters. The population balance
equations that govern the distributions of the clusters,csx,td,
and of the grains,msx,td=ms0dstddsx−xmd, are based on mass
conservation[6(a)] for the processes represented by Eqs.(1)
and (2):

]csx,td/]t = − kgcsx,tdE
0

`

msx8,tddx8 + kgE
0

x

3csx − x8,tdmsx8,tddx8 − kdcsx,td + kdE
x

`

csx8,td

3d„x − sx8 − xmd…dx8 − 2kacsx,tdE
0

`

csx8,tddx8

+ kaE
0

x

csx8,tdcsx − x8,tddx8 − kbcsx,td

+ kbE
x

`

csx8,tdVsx,x8ddx8. s5d

The particle balance is

]msx,td/]t = − kgmsx,tdE
0

`

csx8,tddx8

+ kdE
x

`

csx8,tddsx − xmddx8. s6d

The Dirac delta distributions of fragmentation products,
d(x−sx8−xmd) anddsx−xmd, represent the monomer removal
kernels in Eqs.(5) and (6) [6(g)]. The breakage kernel
Vsx,x8d is the expression of Deimer and Olson[18], which
allows N fragments with each breakage, and contributes to
the zeroth moment equations as the productskb sN−1d. The
choice of rate coefficient expressions is motivated by cluster
kinetics representations used previously[6,18]. Here we as-
sume all rate constants are independent ofx. The initial con-
dition is a mixture of clusters and free grains,

csx,t = 0d = c0
s0ddsx − c0

avgd,

ms0dst = 0d = m0
s0d. s7d

For the loosely packed initial state, the mass of clusters is
quite small, but not necessarily zero; thus,c0

s1d;c0
s0dc0

avg

!xmm0
s0d.

The moment equations from Eq.(8) are [6,18]

dcs0d/dt = fkbsN − 1d − kac
s0dgcs0d, s8d

dcs1d/dt = xmf− kd + kgm
s0dgcs0d, s9d

dms0d/dt = fkd − kgm
s0dgcs0d. s10d

These moment equations can be deduced from Eqs.(1) and
(2) directly, but Eqs.(5) and(6) are necessary if higher mo-
ments are to be formulated. By Eqs.(9) and (10), the mass
balance isdfcs1d+xmms0dg /dt=0, or when integrated with the
initial condition and a final condition,
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c0
s1d + xmm0

s0d = c0
s1dstd + xmms0dstd = cs

s1d + xmms
s0d s11d

where the subscripts denotes a final steady state.
The model evidently meets the condition[19] that the

differential equations yield a final end point that retains a
dependence on earlier states(a history effect). As seen in the
experimental data[1], the differential equations(8)–(10) in-
dicate that a steady state is approached asymptotically as the
time derivatives vanish. By Eqs.(9) and(10), the free grains
reach the number

ms
s0d = kd/kg s12d

which determines the ratio of rate coefficients in Eqs.(9) and
(10), and is similar to a microscopic reversibility condition.
According to Eq.(8) the number of clusters also approaches
a steady state,

cs
s0d = kbsN − 1d/ka. s13d

The force impacting the particles during vibration may de-
pend on the mass of overlying particles. Then the rate coef-
ficients and hence the final state would depend somewhat on
the depth in the packed bed, as observed experimentally[1].
Here, we will neglect this position dependence, and assume
Eqs.(1)–(13) hold throughout the granular medium.

The number of parameters is minimized if scaled dimen-
sionless variables are defined,

Cs0d = cs0d/ms
s0d, Cs1d = cs1d/sms

s0dxmd,

s14d
u = tkd, S= ms0d/ms

s0d, a = ka/kg, b = kbsN − 1d/kd.

Relating each rate term as a ratio allows a comparison of
competitive rates of cluster fragmentation or breakagesbd,
and aggregationsad. It follows from Eqs.(12) and (13) that
b /a=cs

s0d /ms
s0d=Cs

s0d. The differential equations(8)–(10),
when divided bykdms

s0d, yield the dimensionless differential
equations

dCs0d/du = fb − aCs0dgCs0d, s15d

dCs1d/du = sS− 1dCs0d = − dS/du. s16d

In Eq. (14), if S is different from its steady state valueSsu
→`d=1, the driving forceS−1 causes cluster growth or dis-
association. If the initial number of free particles were used
as the scaling factor in Eq.(22), thenms0d /m0

s0d would start
at an initial value 1.0 and evolve to a final valuems

s0d /m0
s0d.

The definitions in Eq.(14), however, highlight the relation-
ship to supersaturation and crystal growth, and their evolu-
tion to equilibrium. The initial conditions for the governing
equations for granular compaction[Eqs.(15) and (16)] are

Ssu = 0d = S0, Cs1dsu = 0d = C0
s1d, andCs0dsu = 0d = C0

s0d.

s17d

The symmetry of Eq.(16) givesdfS+Cs1dg /du=0, and thus
the mass balance,

S0 + C0
s1d = Ssud + Cs1dsud = 1 +Cs

s1d. s18d

The solution to the logistic equation(15), is

Cs0d = ebufsebu − 1dsa/bd + sb/C0
s0ddg−1. s19d

Substituting this into Eq.(16) allows an analytical solution
for Ssud,

Ssud = 1 + sS0 − 1db1/afC0
s0dsebu − 1da + bg−1/a. s20d

This along with the mass balance is all that is needed to
interpret the compaction data. In terms of the scaled variable,
the packing ratio Eq.(4) is

rsud = dm
−1sS0 + C0

s1dd/fv0Ssud + vACs1dsudg. s21d

Elimination of Cs1dsud=S0+C0
s1d−Ssud by Eq. (18) and sub-

stitution of Eq.(20) into Eq. (21) yields the packing ratio as
a function of dimensionless timeu and the parametersa, b,
S0, C0

s0d, andC0
s1d.

RESULTS

The computations are quite easy and straightforward. We
consider the following parameter values[1]: dm=2.4sg/mld,
rst=0d=r0=1/dmv0, thus v0=1/dmr0. The total volume of
the initial amorphous cluster is V0=hpR2

=s87 cmdps1.88 cm/2d2=242 ml. The mass of all particles,
and thus the constant total mass of free grains and clusters
during any experiment, isxmm0

s0d=r0dmV0=337 g. The par-
ticles are glass spheres of radius 1 mm, thusxm
=dms4/3dpR3=0.010 g. We assume the clusters have the
maximum packing fraction[11] 0.74, for hexagonal packing
of spheres. It follows thatvA=1/0.74dm=0.56.

To define the dimensionless quantities and fit the experi-
mental data, one needsms

s0d, which is the solution to Eqs.(4)
and(11) at the steady state valuers. The initial state consists
almost entirely of free grains,m0

s0d=33 700, soS0=1.94 for
G=4.5. The clusters are assumed very small in the initial,
loosely packed system,c0

s1d=0.02 g!xmm0
s0d. These tiny

clusters act as seeds(heterogeneous nuclei) for cluster
growth. The number of clusters,c0

s0d, decreases with aggre-
gation to the final steady state valuecs

s0d. Mass balances are
ensured by the moment equations(15) and (16) and their
solutions. The relationships for the final, steady state clus-
ters,Ss=1 andCs

s0d=b /a, are satisfied automatically by the
differential equations.

Figures 1(a)–1(c) show the impact of the three parameters
a, b, andC0

s0d on the evolution of density with time. Both
the transition time and the final steady state are affected.
Decreasinga or increasingb enhances the breakup of clus-
ters and hence raises the curves to earlier times. The initial
conditionC0

s0d significantly influences the evolution of den-
sity. The final condition must obey the mass balance, and
thus the initial number of free grains, together with the rate
constants, influences the packing fraction.

Linz [9] defined a dimensionless group, the compaction
ratio astd, that conveniently allows comparison with the
Knight et al. [1] experimental data,

astd = frstd − r`g/fr0 − r`g. s22d

The packing fractionrstd is defined by Eq.(7), and its initial
st=0d and equilibriumst→`d values are written with sub-
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scripts 0 and̀ , respectively. Linz derived a difference equa-
tion for the compaction process, which yielded a solution
that represented the experimental data,

astd = h1 + CnfCst + 1 +nd − Cs1 + ndgj−1 s23d

where time has integer values,t=0,1,2, . . . ,̀ . The di-
gamma functionCsxd is the logarithmic derivative of the
gamma function. Linz gave values for the parametersC and
n at two conditions: 10 000 and 0.056 forG=1.8, and 1.3 and
0.077 for G=4. The Knight et al. [1] empirical equation,
expressed in terms ofastd defined by Eq.(22), is

astd = f1 + B lns1 + t/tdg−1. s24d

The two equations(23) and(24) yield results in close agree-
ment. Verifying the current model is particularly convenient
by comparison with Eqs.(23) and (24).

First we consider the irreversible density relaxation ex-
periments[1]. Figures 2(a) and 2(b) show the fit of the

present model with the experimental data[1] for five accel-
erations(G=1.4, 1.8, 2.3, 2.7, and 4.5). Parameter values are
recorded in Table I. The computations show that ifb
=0.001 is fixed, the fitted value ofa varies between 1.0 and
3.4. Figure 2(a) is a comparison with Eqs.(22) and(24), and
Fig. 2(b) is a comparison with Eq.(23) for the two data sets
presented by Linz[9]. For G=1.4, 1.8, and 2.3, steady state
values of density are reached within 10 000 taps. For the
more intense vibrations,G=2.7 and 4.5,r was still climbing
slightly at 10 000 taps. Good agreement was found for the
comparison of model and data with values ofa that in-
creased from 1.1 to 3.4, as shown in Table I. The increasing
values ofa indicate the greater agitation of the more forceful
taps. The extreme condition of severe cluster disruption(liq-
uefaction or fluidization) would cause the grains to end up in
a low-density amorphous state, much like the initial condi-
tion for the described experiments. The number of clusters,
c0

s0d, starts out at the assumed value 1500, and decreases
with aggregation to the final steady state valuecs

s0d, which is
of order of magnitude 10. Fitted values ofc0

s0d were 1500
except atG=1.4, wherec0

s0d=260 was required for a satis-
factory agreement with data. The reason for the anomalous
value for the initial cluster number atG=1.4 is unclear, but
may be due to a decreased formation of nuclei(cluster seeds)
at the weaker tapping intensity. AsG increases, the steady
state number of free grains,ms

s0d, decreases, and thusS0
increases. Correspondingly, the steady state number of clus-
terscs

s0d decreases and their masscs
s1d increases such that the

average cluster mass increases. The model thus is a realistic

FIG. 1. Effect of(a) a=1.5, 2.5, and 3.5;(b) b=0.001, 0.005,
and 0.01; and(c) C0

s0d=0.01, 0.05, and 0.1, on the time evolution of
the packing fractionr. The other parameters are the same as inG
=1.8 in Table I.

FIG. 2. Comparison ofr versus time for the model(solid lines)
with (a) the experimentally based equations of Knightet al. [1]
(dotted lines) and(b) of Linz [9] (dotted lines). The parameters used
in the model are given in Table I.

CLUSTER KINETICS OF DENSITY RELAXATION IN… PHYSICAL REVIEW E 70, 051311(2004)

051311-5



representation of the irreversible experiments[1].
Nowak et al. [2] presented data for both irreversible and

reversible transitions during granular compaction. As dis-
cussed earlier, the compaction process is slow, approaching
the steady state logarithmically with time. In the experiments
[2], after a steady state is reached within 10 000 taps, the
accelerationG is increased and a new steady state is
achieved. At a critical valueG* <3.3, subsequent increases
and decreases ofG led to reversible transitions between
steady states. To simulate these experimental data, values for
a andb were taken from Table I so that the transition would
occur within 10 000 taps. Given the experimental steady
state densityrs, and knowingcs

s1d by the mass balance[Eq
(11)] one calculatesms

s0d by Eq. (4). The ratio of rate con-
stants,a /b, givesCs

s0d and hencecs
s0d. The values ofms

s0d,
cs

s0d, andcs
s1d becomems

s0d, c0
s0d, andc0

s1d for the succeeding
computation. IfS0,1 then the densityr decreases, analo-
gously to crystal dissolution in an undersaturated condition.
Figure 3 shows the simulation of the data[2] for irreversible
and reversible transitions. The parameters used in the model
are given in Table II. For the model, the variation ofCs

s0d and
Cs

s1d with G mirrors the variation of the steady state value of
densityrs with G from the experiments(Fig. 3). The analogy
with the crystal growth phase transition[6(a)–6(d)] from a
supersaturated solution is helpful in understanding granular

compaction, albeit imperfect given the absence of crystal
surface(Gibbs-Thomson) energy[6(f)]. When the supersatu-
ration S is greater than 1.0, crystals will irreversibly grow
from seeds(heterogeneous nuclei). Crystal growth in a su-
persaturated solution or dissolution in an undersaturated so-
lution proceeds irreversibly to equilibrium. For granular
compaction, afterG has reached the critical accelerationG*,
the clusters grow or shrink, respectively, ifS is greater than
or less than unity. Thus, according to the cluster hypothesis,
the history effect and the reversible/irreversible behavior are
explained by clusters growing irreversibly to a critical size,
from which size they can then reversibly grow or reduce.

CONCLUSION

Our approach is consistent with the concept[3] that vi-
brational relaxation of a powder is a combination of
independent-particle and collective excitations. According to
the present view, the excitations are dynamic processes of
single particles and of clusters. Free particles interact with
the clusters by association and dissociation rate parameters
representing, respectively, cluster growth and dissolution,kg
and kd. The clusters may fragment or coalesce through rate
parameters for cluster breakup and aggregation,kb and ka.
The kinetics of the cluster size distributioncsx,td, are ex-
pressed as a population dynamics equation. The model is
thus statistical, with the rate coefficients accounting for the
details of particle interactions in an overall average manner.
In agreement with Barker and Mehta[3], the behavior is only
weakly affected by details of particulate shape and surface
and is to a far greater extent dependent on cluster packing
behavior. Unlike the Monte Carlo simulation[3], however,
the current approach yields uncomplicated differential equa-
tions for the moments(average properties) of the cluster size
distributions. The extension of the model to describe mea-
sured density fluctuations in vibrated granular materials was
not attempted here.

The model suggests that granular compaction is similar to
a liquid-solid phase transition(here with surface energy ef-
fects neglected). Free particles are analogous to a liquid
phase and clusters to the crystalline phase. The desirability of
explaining granular flow behavior based on a system of dif-
ferential equations has been discussed[19]. We have at-
tempted to meet this condition by demonstrating that a clus-
ter kinetics approach yields differential equations for the
moments of the cluster size distribution and free particle con-

TABLE I. Parameters for Knightet al. [1] experimental data withb=0.001. The initial cluster massc0
s1d is constant for all runs at

0.020 g.

G rs 10−4ms
s0d S0 a C0

s0d c0
s0d 105C0

s1d 105Cs
s0d cs

s0d Cs
s1d

cs
s1d

(g)

1.4 0.611 2.60 1.29 1.1 0.01 260 7.80 90.9 23.6 0.296 142

1.8 0.631 2.14 1.57 1.2 0.07 1500 9.30 83.3 17.8 0.575 140

2.3 0.631 2.14 1.57 2.25 0.07 1500 9.30 44.4 9.51 0.575 123

2.7 0.639 1.96 1.71 2.8 0.076 1500 10.0 35.7 7.01 0.716 123

4.5 0.640 1.94 1.73 3.4 0.077 1500 10.3 29.4 5.71 0.736 76.9

FIG. 3. The steady state values of experimental packing fraction
r [2] (solid lines) and computed reduced cluster massCs

s1d (dashed
lines) at different accelerationsG showing reversible and irrevers-
ible behavior. The parameters used in the model are given in
Table II.
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centration that finally arrive suitably at a steady state end
point and yet have a dependence on past history, i.e., a prior
state. Since Maxwell’s comment that the past state of a
granular system would influence its dynamics(reported by
Gudehus[20]), the effect of system history or “memory” has
been a concern. Our proposal is that the number and size of
dense clusters, through their evolution to equilibrium, indeed
affects the time dependence during compaction. Starting
from a low density with very small seed clusters, the clusters

grow irreversibly to their steady state size and number.
Changing to a new vibrational intensity allows a reversible
transition to a new cluster steady state. By the differential
equations for the cluster size distribution moments, the
evolving state can be established at any time after an initial
time if the rate coefficients are known. Any state aftert=0
could be chosen as an initial condition and the subsequent
states on the way to steady state will be determined uniquely
by the governing equations and parameter values.
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